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Zero-shot learning arocnetie+, ‘o8
Active research topic in ML, CV, NLP
Many applications:

e |[mage labeling

¢ Bilingual lexicon extraction

+ Many other cross-domain matching tasks



ZSL is a type of multi-class classification

...but classifier has to predict
labels not appearing in training set

Standard classification task
Yirain = {gorilla, lion, tiger}

T . * Y:crain — quest
Yiest = {gorilla, lion, tiger}

ZSL task

Yirain = {gorilla, lion, tiger}

. Yrain A Yes —
Yiest = {chimpanzee, leopard} > Y test = 0



Pre-processing: Label embedding

Labels are embedded in metric space
(Xi7Y’i)7/I: =1--- 7N

Examples and labels = both vectors
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o example space
Photos provided by Animal with Attributes




Regression-based ZSL: Training

Find a matrix M that projects examples into label space

N
| Mx,; — v ||* + \|M]|?
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Regression-based ZSL: Training

Find a matrix M that projects examples into label space




Regression-based ZSL: Prediction

To predict the label of a test example,

1. project the example into label space, using matrix M
2. find the nearest label

W~ gorilla

example space label space



Hubness: Problem In current approach

[Dinu and Baroni 15; see also Radovanovic 10]

Classifier frequently predicts the same labels (*hubs”)

example space label space
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Hubness: Problem In current approach

[Dinu and Baroni 15; see also Radovanovic 10]

Classifier frequently predicts the same labels (*hubs”)

|
example space label space




Problem with current regression approach:

Learned classifier frequently predicts the same labels
(Emergence of “hub” labels)

Research objective:

Investigate how to reduce hubness in regression-based
/ZSL, and to improve classification accuracy
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roposed approach




Current approach:  min ) [Mx; —yi|* + A[IM]|

gorilla

“‘__..-.T-..b‘ .A/
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example space label space

example space |abel space




Synthetic data resulit

Current Proposed
Hubness 242 ===} 0.5

(N1 skewness)

Accuracy  13.8 ===) 87.6

Proposed approach reduces hubness
and Improves accuracy
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Why proposed approach reduces hubness

Argument for our proposal relies on two concepts

Spatial centrality Shrinkage

of data distributions In regression

16



“Spatial centrality” Rradovanovié+ 10

X’ : query distribution (zero mean)

Fixed objects y1, y2 with

‘ 2

[y1l* < lly
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“Spatial centrality” Rradovanovié+ 10

X’ . query distribution (zero mean) Vo

Fixed objects y1, y2 with O ®
>
ly1ll® < lly2ll? X

Then it can be shown that
Ex[[x —y1|l’] <Ex[[|x — y2|/°

Y1 is more likely to be closerto x ~ X
i.,e. Y1 more likely to be a hub
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Because this holds for any pair y; and yo,
objects closest to the origin tend to be hubs

This bias is called “spatial centrality.”




Degree of spatial centrality
Rd

Further assume distribution of )
y — N(O, SQId)

and

[y2l” = lly1l]* = v/ Vary[|ly|?]

Y
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Degree of spatial centrality
Rd

Further assume distribution of )
y — N(O, SQId)

and

[y2l” = lly1l]* = v/ Vary[|ly|?]

We have
Ex[|x —y2/°] — Ex[||x — y1[|*] = vs°v2d

This formula quantifies the degree of spatial centrality:

Y

The smaller the variance s* of label distribution, the
smaller the spatial centrality (= bias causing hubness)
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IELCEVTEY

To reduce hubness, label distribution Y with smaller
variance should be preferred

Desirable Not desirable

Vo
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IELCEVTEY

To reduce hubness, label distribution Y with smaller
variance should be preferred

Desirable Not desirable

Vo
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Why proposed approach reduces hubness

Argument for our proposal relies on two concepts

rality Shrinkage

tributions IN regression

Spatial
Of

24



“Shrinkage” in ridge/least squares regression
If we optimize ml\;ln | MX — YH% + )\HMH%

Then, we have |[|[MXl||s < [[Y]|2

X Y

For simplicity, projected objects ae assumed to also follow normal distribution
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Current approach: map Xinto Y




Current approach: map X into Y




To reduce hubness, label distributions with
smaller variance is more desirable

Desirable Not desirable

Vo
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Summary of our proposal

Spatial centrality Label distribution with smaller variance is
desirable to reduce hubness

Shrinkage Regression shrinks variance of projected
objects

Proposal Project labels into example space

w reduces variance of labels,
hence suppresses hubness
v,

‘chimpanzee

) gori"a

> >
example space label space 29




Experiments



Experimental objective

We evaluate proposed approach in real tasks

e Does it suppress hubs?
* Does it improve the prediction accuracy?
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Zero-shot tasks

¢ |[mage labeling

gorilla
>
Y': label
e Bilingual lexicon extraction A
orille
g T gEEEEEmg Ll ]S Ieopard
'.“‘ )
gorilla
>

X:source language  Y:target language %5









Bilingual lexicon extraction: fr—en

| Current | Proposed B CCA

better

better

Accuracy
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Conclusions

e Analyzed why hubs emerge in current ZSL approach
- Variance of |labels greater than examples

e Proposed a simple method for reducing hubness
- Reverse the mapping direction

e Proposed method reduced hubness and
outperformed current approach and CCA in image
labeling and bilingual lexicon extraction tasks
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