Ridge regression, hubness, and zero-shot learning

Yutaro Shigeto¹ Ikumi Suzuki² Kauzo Hara³ Masashi Shimbo¹ Yuji Matsumoto¹

Nara Institute of Science and Technology
The Institute of Statistical Mathematics
National Institute of Genetics

Zero-shot learning [Larochelle+, '08]

Active research topic in ML, CV, NLP

Many applications:

- Image labeling
- Bilingual lexicon extraction

+ Many other cross-domain matching tasks

ZSL is a type of multi-class classification

...but classifier has to predict labels not appearing in training set

Standard classification task

 $Y_{\text{train}} = \{\text{gorilla, lion, tiger}\}$ $Y_{\text{test}} = \{\text{gorilla, lion, tiger}\}$

$$\blacktriangleright$$
 $Y_{\text{train}} = Y_{\text{test}}$

ZSL task

 $Y_{\text{train}} = \{\text{gorilla, lion, tiger}\} \implies Y_{\text{train}} \cap Y_{\text{test}} = \emptyset$ $Y_{\text{test}} = \{\text{chimpanzee, leopard}\} \implies Y_{\text{train}} \cap Y_{\text{test}} = \emptyset$

Pre-processing: Label embedding

Labels are embedded in metric space

$$(\mathbf{x}_i, \mathbf{y}_i), i = 1 \cdots, N$$

Examples and labels = both vectors

Photos provided by Animal with Attributes

Regression-based ZSL: Training

Find a matrix **M** that projects examples into label space

$$\min_{\mathbf{M}} \sum_{i=1}^{N} \|\mathbf{M}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2} + \lambda \|\mathbf{M}\|_{F}^{2}$$

Regression-based ZSL: Training

Find a matrix **M** that projects examples into label space

$$\min_{\mathbf{M}} \sum_{i=1}^{N} \|\mathbf{M}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2} + \lambda \|\mathbf{M}\|_{F}^{2}$$

Regression-based ZSL: Prediction

To predict the label of a test example,

project the example into label space, using matrix M
find the nearest label

[Dinu and Baroni 15; see also Radovanovic 10]

[Dinu and Baroni 15; see also Radovanovic 10]

[Dinu and Baroni 15; see also Radovanovic 10]

[Dinu and Baroni 15; see also Radovanovic 10]

Problem with current regression approach:

Learned classifier frequently predicts the same labels (Emergence of "hub" labels)

Research objective:

Investigate how to reduce hubness in regression-based ZSL, and to improve classification accuracy

Proposed approach

Current approach:

$$\min_{\mathbf{M}} \sum \|\mathbf{M}\mathbf{x}_i - \mathbf{y}_i\|^2 + \lambda \|\mathbf{M}\|_F^2$$

Proposed approach: $\min_{\mathbf{M}} \sum ||\mathbf{x}_i - \mathbf{M}\mathbf{y}_i||^2 + \lambda ||\mathbf{M}||_I^2$

Synthetic data result

CurrentProposedHubness
(N1 skewness)24.20.5Accuracy13.887.6

Proposed approach reduces hubness and improves accuracy

Why proposed approach reduces hubness

Argument for our proposal relies on two concepts

Spatial centrality

of data distributions

Shrinkage in regression

"Spatial centrality" [Radovanović+ 10]

 \mathcal{X} : query distribution (zero mean)

Fixed objects \mathbf{y}_1 , \mathbf{y}_2 with $\|\mathbf{y}_1\|^2 < \|\mathbf{y}_2\|^2$

"Spatial centrality" [Radovanović+ 10]

 \mathcal{X} : query distribution (zero mean)

Fixed objects \mathbf{y}_1 , \mathbf{y}_2 with $\|\mathbf{y}_1\|^2 < \|\mathbf{y}_2\|^2$

Then it can be shown that $E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_1\|^2] < E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_2\|^2]$

"Spatial centrality" [Radovanović+ 10]

 \mathcal{X} : query distribution (zero mean)

Fixed objects \mathbf{y}_1 , \mathbf{y}_2 with $\|\mathbf{y}_1\|^2 < \|\mathbf{y}_2\|^2$

Then it can be shown that $E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_1\|^2] < E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_2\|^2]$

Because this holds for any pair y_1 and y_2 , objects closest to the origin tend to be hubs

This bias is called "spatial centrality."

Degree of spatial centrality

Further assume distribution of ${\mathcal Y}$

$$\mathcal{Y} = \mathcal{N}(\mathbf{0}, s^2 \mathbf{I}_d)$$

and

$$\|\mathbf{y}_2\|^2 - \|\mathbf{y}_1\|^2 = \gamma \sqrt{\operatorname{Var}_{\mathcal{Y}}[\|\mathbf{y}\|^2]}$$

Degree of spatial centrality

Further assume distribution of ${\mathcal Y}$

$$\mathcal{Y} = \mathcal{N}(\mathbf{0}, s^2 \mathbf{I}_d)$$

and

$$\|\mathbf{y}_2\|^2 - \|\mathbf{y}_1\|^2 = \gamma \sqrt{\operatorname{Var}_{\mathcal{Y}}[\|\mathbf{y}\|^2]}$$

We have

$$\mathbf{E}_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_2\|^2] - \mathbf{E}_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_1\|^2] = \gamma s^2 \sqrt{2d}$$

This formula quantifies the degree of spatial centrality:

The smaller the variance s^2 of label distribution, the smaller the spatial centrality (= bias causing hubness)

To reduce hubness, label distribution Y with smaller variance should be preferred

Takeaway

To reduce hubness, label distribution Y with smaller variance should be preferred

Why proposed approach reduces hubness

Argument for our proposal relies on two concepts

Spatial centrality of data distributions

Shrinkage in regression

"Shrinkage" in ridge/least squares regression

If we optimize

$$\min_{\mathbf{M}} \|\mathbf{M}\mathbf{X} - \mathbf{Y}\|_F^2 + \lambda \|\mathbf{M}\|_F^2$$

Then, we have $\|\mathbf{M}\mathbf{X}\|_2 \leq \|\mathbf{Y}\|_2$

For simplicity, projected objects ae assumed to also follow normal distribution

Current approach: map X into Y

Proposed approach: map Y into X

Current approach: map X into Y

Proposed approach: map Y into X

To reduce hubness, label distributions with smaller variance is more desirable

Not desirable

Summary of our proposal

Spatial centrality Label distribution with smaller variance is desirable to reduce hubness

Shrinkage Regression shrinks variance of projected objects

Proposal Project labels into example space
reduces variance of labels,
hence suppresses hubness

Experiments

Experimental objective

We evaluate proposed approach in real tasks

- Does it suppress hubs?
- Does it improve the prediction accuracy?

Zero-shot tasks

• Image labeling

• Bilingual lexicon extraction

Compared methods

We used Euclidean distance as a distance measure for finding the nearest label

Image labeling

Current Proposed CCA

Bilingual lexicon extraction: $fr \rightarrow en$

Current Proposed CCA

Accuracy

Conclusions

- Analyzed why hubs emerge in current ZSL approach
 - Variance of labels greater than examples
- Proposed a simple method for reducing hubness
 - Reverse the mapping direction
- Proposed method reduced hubness and outperformed current approach and CCA in image labeling and bilingual lexicon extraction tasks