Ridge Regression, Hubness, and Zero-Shot Learning Yutaro Shigeto · Ikumi Suzuki · Kazuo Hara · Masashi Shimbo · Yuji Matsumoto

Zero-shot learning special type of multi-class classification

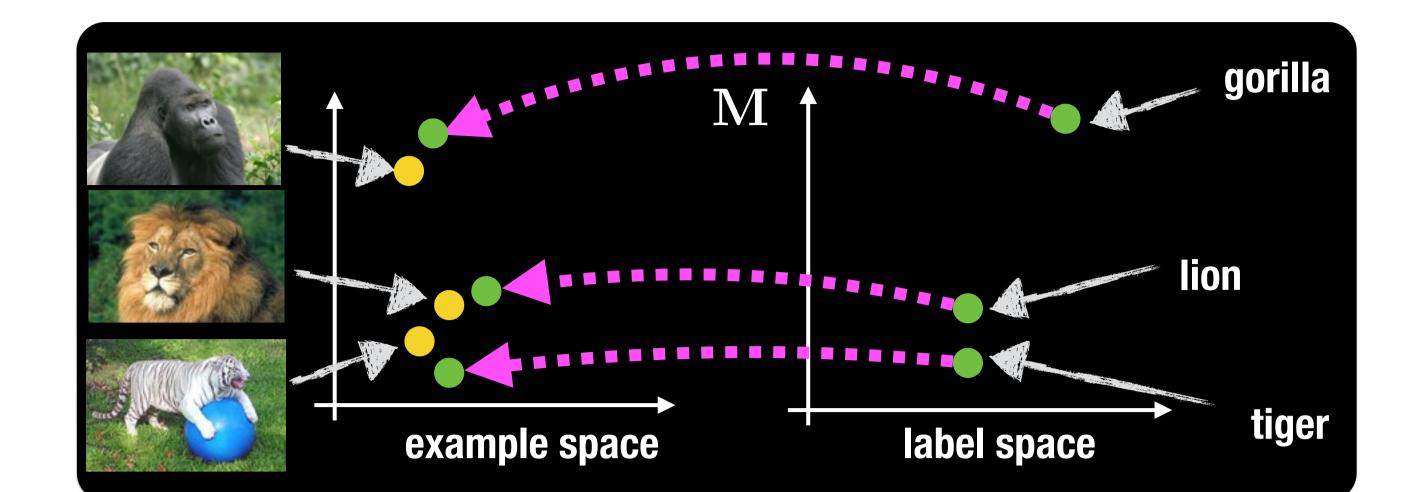
Zero-shot learning (ZSL) is a type of classification task in which labels in the training and test sets are disjoint

Standard classificationZero-shot setting $Y_{\text{train}} = \{\text{gorilla, lion, tiger}\}$
 $Y_{\text{test}} = \{\text{gorilla, lion, tiger}\}$
 $Y_{\text{test}} = \{\text{chimpanzee, leopard}\}$
 $Y_{\text{train}} \cap Y_{\text{test}} = \emptyset$

Applications: Image labeling, bilingual lexicon extraction, and many other cross-domain matching tasks

Proposed approach reverse the mapping direction

Reverse mapping direction (project labels into the example space): $\min_{\mathbf{M}} \sum_{\mathbf{M}} \|\mathbf{x}_i - \mathbf{M}\mathbf{y}_i\|^2 + \lambda \|\mathbf{M}\|_F^2$



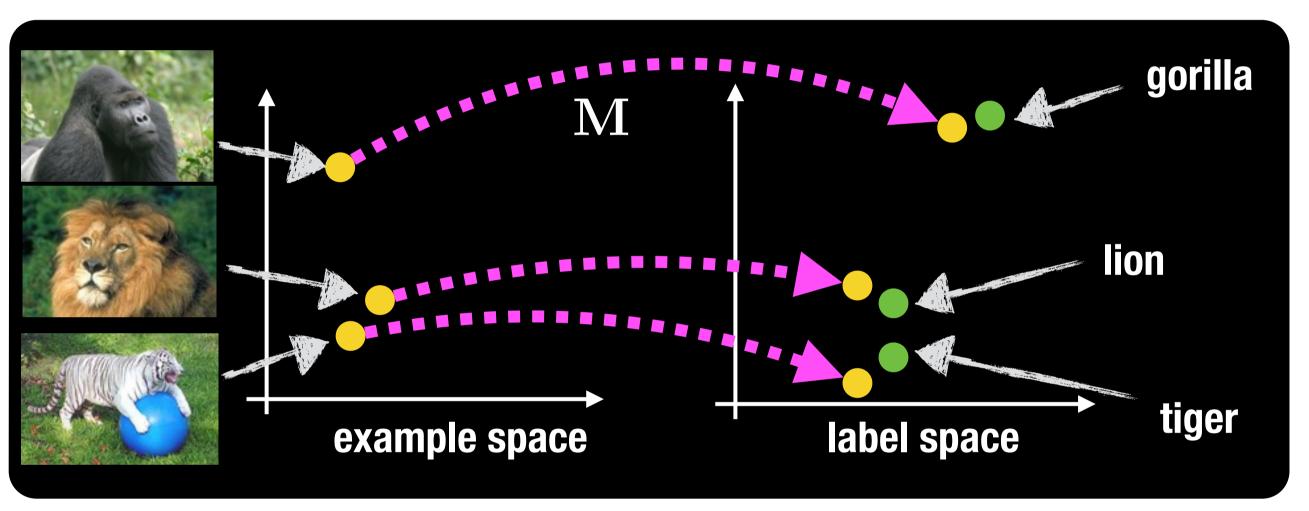
Regression-based approach to ZSL

1. Embed labels as vectors in some "label space" Y

 $(\mathbf{x}_i, \mathbf{y}_i) \in X \times Y$ $i = 1, \cdots, N$

Both examples and labels are vectors

2. (Training) Find projection M: $X \rightarrow Y$ such that $\min_{\mathbf{M}} \sum_{i=1}^{N} \|\mathbf{M}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2} + \lambda \|\mathbf{M}\|_{F}^{2} \quad \text{(Ridge regression)}$



Then, using M, project all test labels into the example space. When a test example is given, find the nearest (projected) label in the example space.

Why proposed method reduces hubness

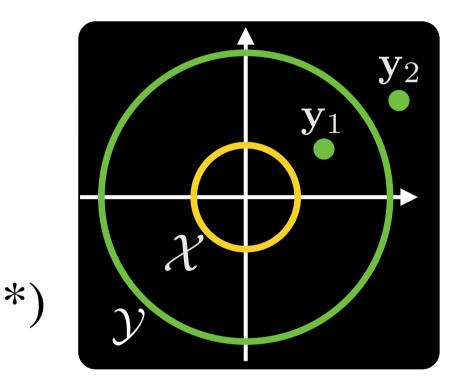
Hubness and variance of label objects

Assume

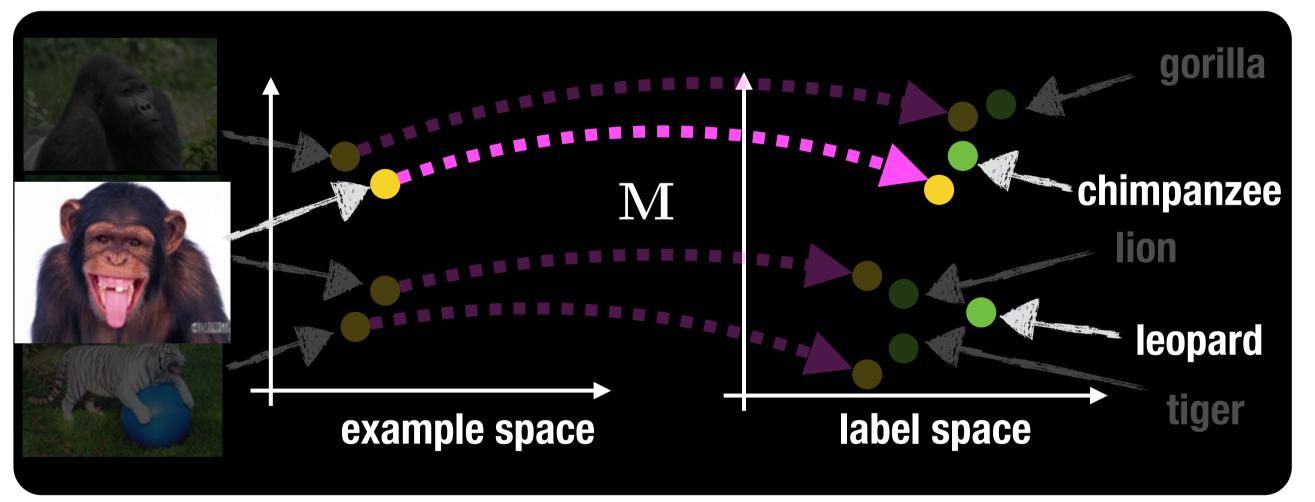
- example distribution: $\mathcal{X} = any$ distribution with zero mean
- label distribution: $\mathcal{Y} = \mathcal{N}(\mathbf{0}, s^2 \mathbf{I})$
- two fixed objects: \mathbf{y}_1 and \mathbf{y}_2 such that $\|\mathbf{y}_2\|^2 - \|\mathbf{y}_1\|^2 = \sqrt{\operatorname{Var}_{\mathcal{Y}}[\|\mathbf{y}\|^2]} > 0$

Then,

$$E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_2\|^2] - E_{\mathcal{X}}[\|\mathbf{x} - \mathbf{y}_1\|^2] = s^2 \sqrt{2d} > 0$$
 (

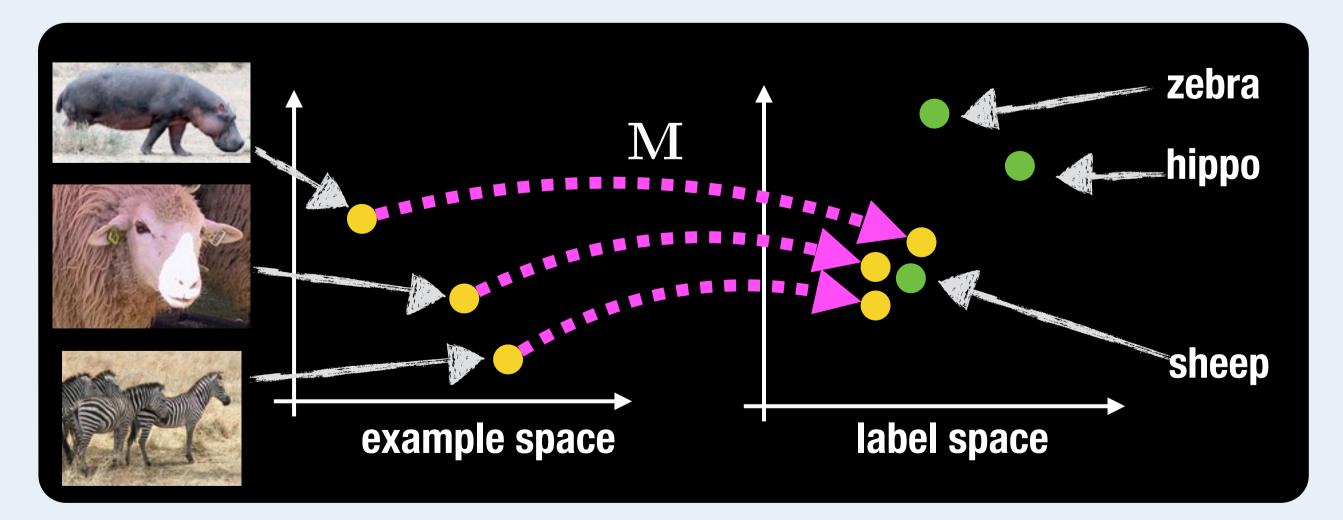


3. (**Prediction**) To predict the class label of a test example **x**, project it to the label space by **M** and find the nearest label there.



Hubness: problem with the current approach

The learned classifier frequently predicts the same labels regardless of input example = emergence of "**hub**" labels



Implication:

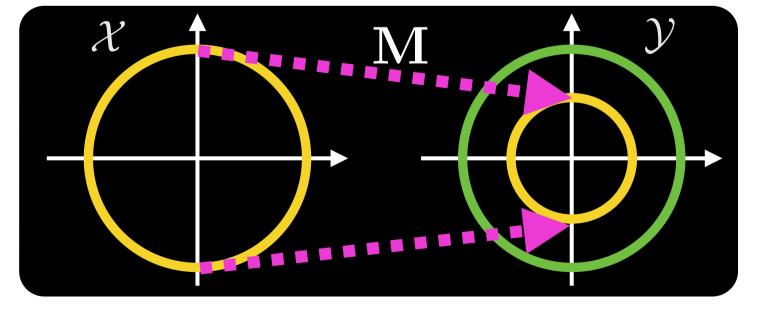
- y_1 is more likely to be closer to x: i.e, more likely to be a hub
- Quantity (*) can be interpreted as the degree of bias in the data which makes objects closest to the origin hubs
- In particular, the smaller the variance s^2 , the smaller the bias (*)

For a fixed \mathcal{X} , distribution \mathcal{Y} with smaller variance s^2 is preferable in order to reduce hubs

Shrinkage of projected objects

If we optimize $\min_{\mathbf{M}} \|\mathbf{M}\mathbf{X} - \mathbf{Y}\|_{F}^{2} + \lambda \|\mathbf{M}\|_{F}^{2}$ then,

 $\|\mathbf{M}\mathbf{X}\|_2 \le \|\mathbf{Y}\|_2$



Projected objects tend to lie closer to the origin

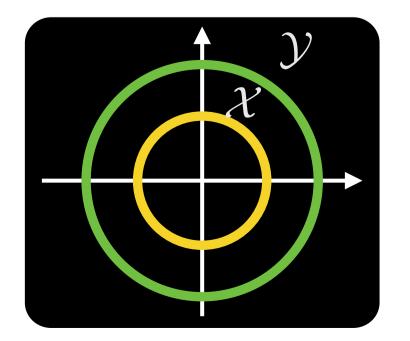
Empirical evaluation

	Image labeling		Bilingual lexicon extraction (fr \rightarrow en)	
	Accuracy [%]	Hubness	Accuracy [%]	Hubness
Current	22.6	2.61	0.3	67.79
Proposed	41.3	0.08	36.6	2.56
			TT 1 1 11	

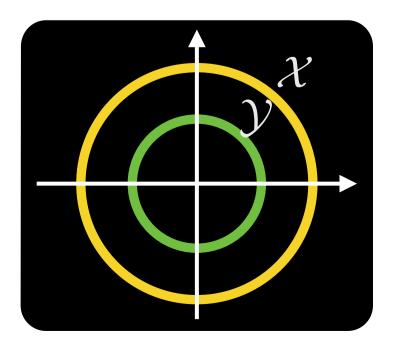
Hubness indicates N_1 skewness

Example-label configuration after projection

Current: map **x** into space *Y*



Proposed: map y into space X



Variance of \mathcal{Y} (relative to \mathcal{X}) smaller with the proposed approach

Proposed approach is less biased to produce hubs